Textbook Reference:	Sections 6.3 (Collisions)		
<u>Goal/Objectives:</u>	 Understand how momentum and kinetic energy relate to the 3 types of collisions: elastic, inelastic, and perfectly inelastic Use projectile equations when an object becomes a horizontal projectile after a collision Use energy equations when an object is part of a ballistic pendulum after a collision 		
Intro: - try several examples w/ New (SmartBoard): $\sum_{2m} \sum_{v}$ KE = $\frac{1}{2} (2m) (v)^2$ KE = KE = (m) (v ²) KE =	$ \sum_{\substack{m \\ 2v}} \frac{m}{2v} $ 2 $\frac{1}{2} (m) (2v)^2$ 2 $(m) (v^2)$	 analyze the m when 1 mark the other side when 2 mar from the other how does the should rebound to figure this "know" how m look at one released from of the other side so, the 2 mark has a velocity according the marbles have at of the single m it must have 2v now, what has the formula f try this equate and velocity is ½ and the 2m try this equate velocity is now (2v) squared total KE is 2 why that is a situation that c so, the amount how KE & mount how KE & mount 	notion of a Newton's cradle ble is started, 1 marble will also rebound from bles are started, 2 marbles will also rebound side e Newton's cradle "know" how many marbles d? s out, let's see what would happen if it didn't hany marbles should rebound possible situation: what if 2 marbles were one side and only 1 marble was bounced off le? bles have a mass of $2m \dots$ the single marble of m to conservation of momentum if the 2 a certain velocity v, what must be the velocity harble? a velocity that is twice as big – or a velocity of uppens when we look at kinetic energy? for kinetic energy is $\frac{1}{2}$ mass \cdot velocity squared ion for the 2 marbles together mass is $2m$ now v ² n cancel out our answer is $m \cdot v^2$ tion for the single marble mass is m and v (2v) squared is $4v^2$ $\cdot m \cdot v^2!$ problem? we have just gained energy, a cannot happen you can't just create energy! nt of <u>KE</u> in a collision is important <u>in addition</u> nomentum work together in a collision is our y
Homework: C #3, 10 P #28, 29, 30,	54, 58	<u>Equipment:</u>	Newton's cradle Ballistic pendulum

Videos: Collisions

Ballistics powerpoint golf club collision file ("Hi Speed" file) ballistics file

(B2) Collisions:

- Elastic: p is conserved KE is conserved many microscopic no deforming

(SmartBoard):

- scanned collision photos

- video clip of golf club collision w/ golf ball

- from yesterday, we know that momentum is conserved

- this is true for all types of collisions (we will assume that any friction that acts doesn't kick in until after the collision)

- we know that KE can't be gained (this is why the Newton's cradle example wouldn't work w/ 2 marbles kicking off 1 single marble)

- however, there are some cases where KE is lost

- so, KE does not necessarily have to be conserved

- whether or not KE is conserved determines the type of collision

the Newton's cradle is an example of an elastic collision
(we used this term yesterday . . . we will see today that there are a few more specifics for elastic collisions)

- the true definition of elastic collision is that \boldsymbol{p} and KE are both conserved

if we release 2 marbles from one side of the Newton's cradle, exactly 2 marbles are bounced off of the other side
the second pair of marbles has the same mass & velocity as the original pair . . .

- so the second pair of marbles has the same momentum, and the same KE

- (of course we know that since friction exists in real life, very very small amounts of KE have been lost, but basically the KE has been conserved)

- almost all types of "microscopic" collisions are elastic

- for instance, when we study gases and look at the collisions between gas molecules, we will always assume that kinetic energy has been conserved

- large examples of elastic collisions are more difficult to find

- usually colliding objects lose energy to deforming the object

- i.e. car crashes . . . so, car crashes are not even close to being elastic!

- notice that deforming doesn't necessarily mean permanently damaged . . .

- the collision between the volleyball and the force plate involved lost energy b/c the VB "squished," but after the collision it snapped back to its original shape . . . the deforming took energy but was not permanent

- this occurs in most collisions in sports!

- our best examples of macroscopic collisions that are elastic occur when there is very little possibility for something to be deformed

- this is why the Newton's cradle has collisions that are elastic ... the marbles can't be deformed

- billiard collisions are another example. (remember to bring billiard balls for extra credit on Monday!)

(B2) Collisions:

- Elastic: p is conserved KE is conserved many microscopic no deforming objects same shape & size

(SmartBoard) Elastic Collisions:

Momentum: $m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v'_1 + m_2 \cdot v'_2$

KE:
$$\frac{1}{2} m_1 \cdot v_1^2 + \frac{1}{2} m_2 \cdot v_2^2 = \frac{1}{2} m_1 \cdot v_1^{2} + \frac{1}{2} m_2 \cdot v_2^{2}$$

 $v_1 + v_1^2 = v_2 + v_2^{2}$

- it is also more likely that KE will be conserved if the objects are of similar shape and size, and made from the same types of material

- this again lowers the possibility that energy will be lost to deforming the objects during the collision

- air track carts from yesterday lose very little energy to deformation & are of similar size & material . . . so they are basically elastic collisions

- take a brief look @ the math in elastic collisions . . .

- because we know that KE and p are both conserved, we can actually create two equations for that collision

- one is the conservation of p equation

- the other equation is for the conservation of KE . . . rather long! . . . but it follows the same form as the p equation

- if this applied to a collision like we had yesterday, where the two carts were of unequal mass, our only unknowns would be v_1 ' and v_2 '

- because we have two equations and two unknowns, we could use a system of equations to figure out exactly what the two velocities after the collision were

- so, those velocities that we were predicting yesterday could be calculated out exactly . . . if we know the 2 masses, we can tell exactly how much one of them will slow down when they collide

- bad news is that this is obviously a very complicated system of equations

- good news is first that you won't have to do any calculations with them! . . . (but be aware that there is a method to calculate the velocities that we were estimating yesterday)

- other good news that you may use in other Physics classes . . . these 2 equations can be combined together & simplified (your textbook shows the steps for this)

- the KE equation can be simplified to use velocities only . .

. this makes the system much easier to use . . .

- we have the conservation of p equation & the simplified conservation of KE equation

- however, I hate to even put this on the board . . . b/c you won't use it in this class!

- don't confuse yourself w/ the equations we are using!

(B2) Collisions: - Elastic: p is conserved KE is conserved - Inelastic: p is conserved KE is lost	many microscopic no deforming objects same shape & size energy lost in collision (to deforming)	 most macroscopic collisions do involve some sort of energy loss (usually that energy is lost to deformation) any type of collision where energy is not conserved is known as inelastic for instance, all of the pictures of collisions that you are looking at are inelastic, car crashes are inelastic, etc however, inelastic collisions still conserve p! this means that conservation of p can always be used to calculate unknown velocities when 2 objects collide you can never assume that KE is conserved, but you can always assume that p is conserved!!
- Perfectly Inelastic: p is conserved objects stick together max KE is lost (sometimes all KE is lost)		 there is a special case of inelastic collisions that you should also be familiar with this is known as a "perfectly inelastic collision" all inelastic collisions lose energy, but there is one situation where an even greater amount of energy is lost.
		 can anyone figure out what situation would result in losing the maximum amount of KE (hint yesterday we looked at a collision where all KE was lost) to lose all KE, the carts had to stick together! perfectly inelastic collisions is the term given to any type of collision where the objects stick together
		- <u>momentum is still conserved</u> - we do calculate p in a slightly different way remember from yesterday that we write the 2^{nd} side of the equation by using $m_1 + m_2$ as a single mass
		 note that perfectly inelastic is a sub-category of inelastic energy is lost in both the key w/ perfectly inelastic is that by sticking together the maximum KE for a collision is lost!
		 is it possible to have a collision where 2 objects stick together but don't stop? (sure!) so, just b/c a collision is perfectly inelastic doesn't necessarily mean that all KE is lost just the most possible <u>for that situation</u> i.e. if you have 2 carts that are equal mass & equal v moving at each other when they stick they will stop but if you have 2 carts of unequal mass & equal v moving at each other when they stick they will not stop (they can't, b/c the p of the system is not zero) they have lost KE and they have lost the most possible KE for those 2 carts at those 2 velocities, but they haven't lost all KE

- p is conserved in collision
- projectiles used after collision

(SmartBoard) Ex:

- Ballistics PowerPoint
- 1st slide runs entire process on mouse-click
- 2nd slide has a pause to click after collision

- many of your homework problems will use momentum in a process called "ballistics"

- this process uses momentum combined with several concepts that we have already studied to determine the velocity of fast moving objects (such as a bullet)

- remember the lab where you fired a dart gun off of the edge of the lab table and used projectile equations in order to find its velocity

- why would this be almost impossible to do w/ a real gun? . . . large amount of space needed!

- however, what if we first fire the bullet into another object, something relatively heavy (often a "block of wood") . . . the bullet would slow down enough for this process to work

- usually the bullet sticks in the block of wood . . . what type of collision is this?

- is p conserved? (yes – always conserved)!

- then, the bullet and the block of wood together become a projectile & we use projectile equations to find dx

- now, usually your unknown is the velocity of the bullet . . . get used to working backwards . . . first use projectiles to find the velocity of the bullet & block of wood when they leave the table . . . then use momentum to find the initial velocity of the bullet

- note that the combination here is conservation of p and projectile equations (we don't ever use energy in the collision b/c it is not conserved all collisions)

(B3) Ballistics:

- p is conserved in collision
- projectiles used after collision
- energy used after collision

(SmartBoard) Ex:

- Ballistics PowerPoint
- 3rd slide runs entire process on mouse-click
- 4th slide has a pause to click after collision

Momentum:

Demo:

- ballistic pendulum (See Ch6 Demo1 photos)

(SmartBoard):

- video clip of ballistics (volume on!)

Announcements:

- 2^{nd} type of ballistics experiment is known as a "ballistic pendulum"

- same basic purpose is to find the velocity of something moving rather fast . . .

- bullet is also fired into something heavy (ours is a marble shooting into a metal cage, but many HW problems will call it a block of wood)

- but the wood block is part of a pendulum and free to rotate up into the air

- in this case, the velocity of the bullet eventually causes motion upwards instead of projectile motion

- now, what method would we normally use if we have an object that is beginning at the bottom of a path and moving upwards?

- we need to use conservation of energy here . . . but we have to be careful!

- is energy conserved in the collision? . . . no (perfectly inelastic)

- so . . . momentum is used for the collision
- we have 2 separate masses to begin w/ . . . bullet & block

- we have 2 individual velocities \underline{before} . . . (although block velocity is zero)

- and we have one velocity after . . .

- this is the velocity of the bullet and block of wood together, immediately after they have collided . . . and while they are still at the bottom of the path.

- then, conservation of energy is used to find how far up into the air the block of wood & bullet will move

- usually (there are some exceptions) the bullet is imbedded in the block

- so the mass we use for the movement up is the mass of both together

- the velocity at the bottom is the velocity that they had together right after the collision (v')

- note that conservation of energy is only used <u>after</u> the collision (we must know the velocity of the bullet/block combination <u>before</u> we start using conservation of energy)

- most of you have heard of the field of ballistics . . . it is obviously much more detailed than what we have looked at here!

- here is a little video clip (just for fun) that shows some of the more unique possibilities . . . $\textcircled{\sc op}$